Since its introduction into service in December 1985, the ATR 42 has become a reference in the regional air transport industry for reliability and profitability. Remarkably simple to operate and maintain, equipped with efficient, low-fuel-burn engines, the ATR 42 operating costs are 15%–20% lower than the competition.

The basic ATR 42-300 is fitted with two PW120 engines rated at 2,000 shp each. The ATR 42-320, fitted with two PW121 engines rated at 2,100 shp each, has been developed to offer increased performance for hot and high conditions and short runway operations. About 400 first generation ATR 42 have been ordered by airlines worldwide, contributing to their development and continuous profitability.
Engine Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>ATR 42-300</th>
<th>ATR 42-320</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW120</td>
<td>1,800 SHP</td>
<td>1,900 SHP</td>
</tr>
<tr>
<td>PW121</td>
<td>1,900 SHP</td>
<td>2,000 SHP</td>
</tr>
</tbody>
</table>

Take-off Power
- Basic (MTOW - ISA - SL): 1,090 m - 3,576 ft
- At TOW for 300 Nm Max pax - SL - ISA: 1,073 m - 3,520 ft
- At TOW for 300 Nm Max pax - 3,000 ft - ISA +10: 1,271 m - 4,170 ft

Landing Field Length (JAR25)
- Basic (MLW - SL): 886 m - 2,907 ft
- At LW (max pax + reserves) - SL: 864 m - 2,835 ft

Optimum Climb Speed
- 160 KIAS

Rate of Climb (ISA, SL, MTOW)
- 1,320 ft/min

Time to Climb to FL170
- 15.1 min

Max Cruise Speed (95% MTOW - ISA - Optimum Fl)
- 270 KTAS - 500 km/h

Fuel Flow at Cruise Speed
- 584 kg/h

Range with max pax
- 4,56 Nm

200 Nm Block Fuel
- 490 kg - 1,081 lb

CO2 Emission
- 1,544 kg - 3,403 lb

300 Nm Block Fuel
- 669 kg - 1,475 lb

CO2 Emission
- 2,108 kg - 4,648 lb

NB: en-route performance computed assuming Max Optional TOW, Typical in-service OEW, 48 PAX@95 Kg, JAR fuel reserves, taxi time allowance: 4 min.